Закон всемирного тяготения. Движение планет и спутников

 Закон всемирного тяготения

Со­об­ра­же­ния Нью­то­на со­сто­я­ли в сле­ду­ю­щем.

- Если сила при­тя­же­ния тела к Земле про­пор­ци­о­наль­на массе тела Fтяг = mg, а каж­дой силе дей­ствия есть сила про­ти­во­дей­ствия F1,2 = F2,1 и если тело при­тя­ги­ва­ет­ся к Земле, то и Земля при­тя­ги­ва­ет­ся к телу. Тогда сила тя­го­те­ния долж­на быть про­пор­ци­о­наль­на как массе од­но­го тела, так и массе вто­ро­го тела Fтяг ~ m1m2, то есть сила тя­го­те­ния про­пор­ци­о­наль­на про­из­ве­де­нию масс, вза­и­мо­дей­ству­ю­щих тел.

- Нью­тон за­ме­тил, что уско­ре­ние на пла­не­те Земля, уско­ре­ние сво­бод­но­го па­де­ния

g = Fтяг / m – это при­мер­но 10 м/с2, а уско­ре­ние, с ко­то­рым дви­жет­ся Луна по своей ор­би­те ал = Fтяг / Мл = g / 3600, – это цен­тро­стре­ми­тель­ное уско­ре­ние, в 3600 раз мень­ше уско­ре­ния сво­бод­но­го па­де­ния. Нью­тон до­га­дал­ся, по­че­му такая раз­ни­ца в чис­лах: дело в том, что рас­сто­я­ние от Земли до Луны со­став­ля­ет при­мер­но ше­сть­де­сят зем­ных ра­ди­у­сов rз ≈ 60Rз. Их, а также уско­ре­ние 3600 Нью­тон объ­еди­нил сле­ду­ю­щим вы­во­дом: сила тя­го­те­ния об­рат­но про­пор­ци­о­наль­на квад­ра­ту рас­сто­я­ния между вза­и­мо­дей­ству­ю­щи­ми те­ла­ми Fтяг ~ 1 / r2.

Учи­ты­вая эти два по­сы­ла, Нью­тон дал общую фор­му­ли­ров­ку: сила все­мир­но­го тя­го­те­ния прямо про­пор­ци­о­наль­на мас­сам вза­и­мо­дей­ству­ю­щих тел и об­рат­но про­пор­ци­о­наль­на квад­ра­ту рас­сто­я­ния между ними.

  = γ (-)

γ – ко­эф­фи­ци­ент про­пор­ци­о­наль­но­сти (гамма), а на­прав­ле­ние силы – это сила при­тя­же­ния друг к другу, и на­прав­ле­ние в этой фор­му­ле да­ет­ся сле­ду­ю­щим об­ра­зом: это еди­нич­ный век­тор, при­ве­ден­ный из пер­во­го тела ко вто­ро­му, то есть от­но­ше­ние са­мо­го век­то­ра к его мо­ду­лю. Знак минус озна­ча­ет, что сила тя­го­те­ния на­прав­ле­на не от пер­во­го тела ко вто­ро­му, а от вто­ро­го тела к пер­во­му.

Ко­эф­фи­ци­ент про­пор­ци­о­наль­но­сти из­ме­рил Ка­вен­диш в своем экс­пе­ри­мен­те:

γ = G = 6,62 · 10-11 Нм2 / кг2

Из за­ко­на все­мир­но­го тя­го­те­ния сле­ду­ют фор­му­лы уско­ре­ния сво­бод­но­го па­де­ния:

1. Уско­ре­ние сво­бод­но­го па­де­ния у по­верх­но­сти пла­не­ты:

g0 = Fтяг / m = γmМз / R2з · m = γ · Мз / R2з.

Зная уско­ре­ние на пла­не­те Земля, ра­ди­ус Земли, зна­че­ние гра­ви­та­ци­он­ной по­сто­ян­ной, можно при необ­хо­ди­мо­сти вы­чис­лить массу Земли.

2. Уско­ре­ние сво­бод­но­го па­де­ния на ка­ком-то рас­сто­я­нии h от по­верх­но­сти пла­не­ты:

gh = γ· Мз / (Rз + h)2 = (γ · Мз / R2з) · R2з / (Rз + h)2.

Так как в такой форме ее труд­но при­ме­нить, то поль­зу­ют­ся при­ве­ден­ной фор­му­лой:

gh = g0 · (Rз / Rз + h)2

3. Уско­ре­ние сво­бод­но­го па­де­ния на глу­бине: gh = g0 · (Rз - h / Rз).

На ос­но­ве за­ко­на все­мир­но­го тя­го­те­ния можно рас­счи­тать ско­рость спут­ни­ков пла­нет (рис. 1).

При­мер рас­че­та ско­ро­сти спут­ни­ка

Рис. 1. При­мер рас­че­та ско­ро­сти спут­ни­ка

m ┴  => gh =  ; g0 = ; Vh =  

при h <<  Vh =  ≈ 7,9 км/с

В этом слу­чае сила при­тя­же­ния будет пер­пен­ди­ку­ляр­на ско­ро­сти спут­ни­ка при дви­же­нии по кру­го­вой ор­би­те, она вы­зы­ва­ет цен­тро­стре­ми­тель­ное дви­же­ние. Зная уско­ре­ние сво­бод­но­го па­де­ния на вы­со­те h, по­лу­ча­ем фор­му­лу ско­ро­сти спут­ни­ка на вы­со­те h. Оче­вид­но, что с ро­стом вы­со­ты ско­рость будет умень­шать­ся, а у самой по­верх­но­сти Земли при очень малых h по срав­не­нию с ра­ди­у­сом Земли при­ме­ня­ет­ся упро­ще­ние. То есть h пре­не­бре­га­ют, вно­сят ра­ди­ус Земли под ко­рень, про­из­во­дят со­кра­ще­ния и по­лу­ча­ют фор­му­лу пер­вой кос­ми­че­ской ско­ро­сти, ко­то­рая равна 7,9 км/с. При такой ско­ро­сти спут­ник неда­ле­ко от по­верх­но­сти Земли может дви­гать­ся по кру­го­вой ор­би­те.

 Пример решения задачи 1

У по­верх­но­сти Луны на кос­мо­нав­та дей­ству­ет сила тя­го­те­ния 120 Н. Какая сила тя­го­те­ния дей­ству­ет со сто­ро­ны Луны на того же кос­мо­нав­та в кос­ми­че­ском ко­раб­ле, дви­жу­щем­ся по кру­го­вой ор­би­те во­круг Луны на рас­сто­я­нии трех лун­ных ра­ди­у­сов от ее цен­тра?

1. 0 Н; 2. 39 Н; 3. 21 Н; 4. 13 Н.

За­пи­шем крат­кое усло­вие за­да­чи и рас­смот­рим ре­ше­ние:

Какая сила тя­го­те­ния дей­ству­ет со сто­ро­ны Луны на того же кос­мо­нав­та в кос­ми­че­ском ко­раб­ле

Ответ: ва­ри­ант 4. 13 Н.

 Пример решения задачи 2

Два тела мас­сой по 1000 тонн уда­ле­ны на 0,1 км друг от друга. Найти силу их гра­ви­та­ци­он­но­го при­тя­же­ния.

1. 6,7 мН; 2. 0,67 Н; 3. 6,7 Н; 4. 6,7 кН.

За­пи­сы­ва­ем крат­кое усло­вие за­да­чи, пе­ре­во­дя тонны в ки­ло­грам­мы, рас­сто­я­ние в метры, и ре­ше­ние.

Пример решения задачи 2 айти силу их гра­ви­та­ци­он­но­го при­тя­же­ния

Ответ: ва­ри­ант 1. 6,7 мН.

При­ме­няя закон все­мир­но­го тя­го­те­ния, мы по­лу­ча­ем пра­виль­ный ответ 1.

 Пример решения задачи 3

Чему равна ско­рость спут­ни­ка Земли на кру­го­вой ор­би­те на вы­со­те 500 км от ее по­верх­но­сти? Ра­ди­ус Земли при­нять рав­ным 6400 км.

1. 7,6 км/с; 2. 7,8 км/с; 3. 7,9 км/с; 4. 8,2 км/с.

За­пи­сы­ва­ем крат­кое усло­вие за­да­чи и вы­чис­ле­ния.

Чему равна ско­рость спут­ни­ка Земли на кру­го­вой ор­би­те на вы­со­те 500 км от ее по­верх­но­сти

Ответ: ва­ри­ант 1. 7,6 км/с.

Ис­поль­зуя фор­му­лу спут­ни­ка на вы­со­те, мы вно­сим ра­ди­ус пла­не­ты под знак ра­ди­ка­ла и раз­би­ва­ем его на два мно­жи­те­ля. У нас под кор­нем по­лу­чи­лась пер­вая кос­ми­че­ская ско­рость, ко­то­рую мы можем вы­не­сти за знак ра­ди­ка­ла и, под­ста­вив зна­че­ния, по­лу­чим, что ско­рость будет равна 7,6 км/с – это со­от­вет­ству­ет 1 от­ве­ту.


 Движение планет и спутников

На ос­но­ве за­ко­на все­мир­но­го тя­го­те­ния рас­счи­ты­ва­ют пе­ри­од об­ра­ще­ния спут­ни­ков, как есте­ствен­ных, так и ис­кус­ствен­ных. Зная пе­ри­од об­ра­ще­ния, мы можем найти массу спут­ни­ков. Пе­ри­од об­ра­ще­ния на­хо­дит­ся по фор­му­ле: Т = 2πR / V, то есть длина окруж­но­сти, де­лен­ная на ско­рость по ор­би­те. При малых вы­со­тах по срав­не­нию с ра­ди­у­сом Земли для вы­чис­ле­ния ско­ро­сти спут­ни­ка, ко­то­рый летит неда­ле­ко от по­верх­но­сти Земли, пе­ри­од мы на­хо­дим по фор­му­ле:

То =  = 2π

Пом­ним о том, что в чис­ли­те­ле у нас длина эк­ва­то­ра, а в зна­ме­на­те­ле пер­вая кос­ми­че­ская ско­рость. Про­из­ве­дя рас­че­ты мы по­лу­чим, что То ≈ 5060 с ≈ 1 ч 24 мин = 1,4 ч – это время, за ко­то­рое ис­кус­ствен­ный спут­ник Земли, дви­га­ю­щий­ся неда­ле­ко от по­верх­но­сти, со­вер­ша­ет пол­ный обо­рот. Если спут­ник летит по ор­би­те, вы­со­та ко­то­рой со­из­ме­ри­ма с ра­ди­у­сом Земли, мы поль­зу­ем­ся фор­му­лой:

Тh =  = 2π  = То ( )3/2

Эту фор­му­лу мы по­лу­чи­ли, внеся (R + h) под знак ра­ди­ка­ла и ис­поль­зуя уже по­лу­чен­ное зна­че­ние То.

Рас­смот­рим за­да­чу, по ко­то­рой была вы­чис­ле­на масса Солн­ца.

Ра­ди­ус зем­ной ор­би­ты со­став­ля­ет 1,5 · 1011 м. Чему равна масса Солн­ца?

Обыч­но эта за­да­ча вы­зы­ва­ет за­труд­не­ние, так как дан всего лишь один па­ра­метр, но нужно пом­нить, что Земля во­круг Солн­ца со­вер­ша­ет один обо­рот за 365 дней, в сут­ках у нас 24 часа и в каж­дом часе 3600 се­кунд, так что нам из­ве­стен пе­ри­од об­ра­ще­ния Земли как спут­ни­ка Солн­ца. По­это­му за­пи­сы­ва­ем крат­кое усло­вие за­да­чи и ре­ше­ние.

Движение планет и спутников

Ответ: 2·1030 кг.

Сила, с ко­то­рой Земля при­тя­ги­ва­ет­ся к Солн­цу, при­во­дит к цен­тро­стре­ми­тель­но­му уско­ре­нию, по­это­му при­ме­ня­ем фор­му­лу, ко­то­рая вы­ра­жа­ет­ся через пе­ри­од об­ра­ще­ния. С дру­гой сто­ро­ны, это сила тя­го­те­ния, и по за­ко­ну все­мир­но­го тя­го­те­ния вы­ра­жа­ет­ся через гра­ви­та­ци­он­ную по­сто­ян­ную, массу Земли и массу Солн­ца, де­лен­ные на квад­рат рас­сто­я­ния между ними. Со­кра­ща­ем массу Земли в двух по­след­них чле­нах этого ра­вен­ства, неиз­вест­ным оста­ет­ся толь­ко масса Солн­ца, ко­то­рую мы можем вы­чис­лить, под­став­ляя все дан­ные.

Рас­смот­рим еще одну за­да­чу.

В ре­зуль­та­те пе­ре­хо­да с одной кру­го­вой ор­би­ты на дру­гую цен­тро­стре­ми­тель­ное уско­ре­ние спут­ни­ка Земли умень­ша­ет­ся. Как из­ме­ня­ют­ся в ре­зуль­та­те этого пе­ре­хо­да ра­ди­ус ор­би­ты спут­ни­ка, ско­рость его дви­же­ния по ор­би­те и пе­ри­од об­ра­ще­ния во­круг Земли? Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

1. уве­ли­чи­лась; 2. умень­ши­лась; 3. не из­ме­ни­лась.

При ре­ше­нии задач с вы­бо­ром от­ве­та необ­хо­ди­мо перед ре­ше­ни­ем вы­пи­сать фор­му­лы ве­ли­чин, ко­то­рые фи­гу­ри­ру­ют в усло­вии за­да­чи. Ска­за­но о том, что цен­тро­стре­ми­тель­ное уско­ре­ние умень­ши­лось, а цен­тро­стре­ми­тель­ное уско­ре­ние спут­ни­ка есть не что иное, как уско­ре­ние сво­бод­но­го па­де­ния на его ор­би­те: gh = g0 · (Rз / Rз + h)2, если g умень­ши­лось, зна­чит, h уве­ли­чи­лось.

Ско­рость спут­ни­ка на ор­би­те, на­хо­дя­ще­го­ся на вы­со­те, – Vh =  , если h уве­ли­чи­ва­ет­ся, то ско­рость умень­ша­ет­ся.

Фор­му­лу для пе­ри­о­да об­ра­ще­ния при­ме­ня­ем Тh = То ()3/2, по ко­то­рой видно без вы­чис­ле­ний, что про­изо­шли из­ме­не­ния.

Ответ: в ре­зуль­та­те пе­ре­хо­да ра­ди­ус ор­би­ты спут­ни­ка уве­ли­чил­ся, ско­рость его дви­же­ния по ор­би­те умень­ши­лась, пе­ри­од об­ра­ще­ния во­круг Земли уве­ли­чил­ся.

 Заключение

На­ли­чие все­мир­но­го тя­го­те­ния объ­яс­ня­ет устой­чи­вость Сол­неч­ной си­сте­мы, дви­же­ние пла­нет и дру­гих небес­ных тел. С от­кры­ти­ем за­ко­на все­мир­но­го тя­го­те­ния к людям при­шло по­ни­ма­ние прин­ци­па стро­е­ния все­лен­ной. Яр­чай­шим при­ме­ром при­ме­не­ния за­ко­на все­мир­но­го тя­го­те­ния яв­ля­ет­ся за­пуск ис­кус­ствен­но­го спут­ни­ка Земли. Спут­ник все время на­хо­дит­ся на рав­ном рас­сто­я­нии над по­верх­но­стью Земли. Земля при­тя­ги­ва­ет оди­на­ко­во во всех на­прав­ле­ни­ях.

Последнее изменение: Понедельник, 25 Июнь 2018, 19:20