Строение клетки. Цитоплазма. Клеточный центр. Рибосомы
Строение клетки
Как мы уже знаем, ядро управляет всеми процессами жизнедеятельности клетки. Эти процессы сложны и многообразны: клетка должна поддерживать форму, получать извне вещества для пластического и энергетического обмена, синтезировать органические вещества (Рис. 1).
Рис. 1. Строение клетки
Каждая клетка представляет собой сложнейшую биохимическую фабрику, во много раз более совершенную, чем любой созданный руками человека механизм или завод. И все эти многочисленные биохимические реакции протекают в цитоплазме и в органеллах клетки.
Цитоплазма
Цитоплазма, или внутриклеточная жидкость, – жидкость, находящаяся внутри клеток. У эукариот матрикс цитоплазмы отделен клеточными мембранами от содержимого органоидов, например матрикса митохондрий. Содержимое клетки, за исключением плазматической мембраны и ядра, называют цитоплазмой.
Цитоплазма состоит из основного водянистого вещества и находящихся в ней различных органелл. Основное вещество цитоплазмы получило название гиалоплазмы или цитазоля и представляет собой густой бесцветный коллоидный раствор, который состоит из воды, содержание которой колеблется от 70 до 90 %.
В гиалоплазме находятся малые органические молекулы и биополимеры, а также различные неорганические соединения (Рис. 2).
Рис. 2. Концентрация ионов в цитоплазме
Гиалоплазма – не только место хранения биомолекул, в ней же и протекают процессы обмена веществ в клетке – биосинтез белка, через нее происходит взаимодействие ядра и органоидов. Цитоплазма постоянно перемещается внутри клетки, что хорошо заметно по движению органелл. При помощи современного микроскопа удалось обнаружить тонкую структуру цитоплазмы (Рис. 3).
Рис. 3. Цитоплазма
Цитоплазма эукариотических клеток пронизана трехмерной сетью из белковых нитей, называемых цитоскелетом. Он состоит из трех элементов: микротрубочек, промежуточных филаментов и микрофиламентов. Микротрубочки пронизывают всю цитоплазму и представляют собой полые трубки диаметром 20-30 нм. Их стенки толщиной 5 нм образованы специально закрученными нитями, построенными из белка тубулина. Сбор микротрубочек из тубулина происходит в клеточном центре. Микротрубочки прочны и образуют опорную основу цитоскелета. Часто они располагаются таким образом, чтобы противодействовать растяжению и сжатию клетки. Кроме механической функции, микротрубочки выполняют также и транспортную функцию, участвуя в переносе по цитоплазме различных веществ.
Они являются главным белковым компонентом аксонов и дендритов. В аксоне имеются трубочки, идущие по всей его длине, поддерживают структуру аксона и обеспечивают транспорт веществ вдоль аксона (Рис. 4).
Рис. 4. Нервная клетка
Животные клетки, у которых нарушена система микротрубочек, принимают сферическую форму. В растительных клетках расположение микротрубочек соответствует расположению целлюлозных волокон, отлагающихся при построении клеточной стенки, таким образом, они косвенно определяют форму клетки.
Микрофиламенты (МФ) – нити, состоящие из молекул глобулярного белка актина и присутствующие в цитоплазме всех эукариотических клеток. Микрофиламенты образуют сплетения или пучки (Рис. 5).
Рис. 5. Пучки микрофиламентов
Микрофиламенты чаще всего располагаются вблизи плазматической мембраны. Они способны менять ее форму, что очень важно, например, для процессов фагоцитоза и пиноцитоза.
Промежуточные филаменты (ПФ) – нитевидные структуры из особых белков, один из трех основных компонентов цитоскелета клеток эукариот. Средний диаметр ПФ – около 10 нм – меньше, чем у микротрубочек (около 25 нм), и больше, чем у актиновых микрофиламентов (5-9 нм). Они играют роль в движении и участвуют в образовании цитоскелета.
Мы видим, что цитоплазма пронизана компонентами цитоскелета, основные функции которого:
- механический каркас клетки для поддержания ее формы;
- мотор клеточного движения, так как компоненты цитоскелета определяют деление клетки, перемещение органелл внутри клетки и движение цитоплазмы;
- транспорт органелл и клеточных комплексов внутри клетки.
Клеточный центр
Клеточный центр, или центросома, расположен в цитоплазме вблизи ядра и образован двумя центриолями – цилиндрами, расположенными перпендикулярно друг другу (Рис. 6).
Рис. 6. Телофаза митоза клетки
Диаметр каждой центриоли – 150–250 нм, а длина – 300–500 нм. Стенка каждой центриоли состоит из девяти комплексов микротрубочек, а каждый комплекс (или триплет), в свою очередь, построен из трех микротрубочек. Триплеты центриоли соединены между собой рядом связок (Рис. 7). Основной белок, образующий центриоли, – тубулин.
Рис. 7. Триплеты центриоли
Центриоли необходимы для образования базальных телец ресничек и жгутиков. Перед делением клетки центриоли удваиваются. В процессе деления клетки они попарно расходятся к противоположным полюсам клетки и участвуют в образовании нитей веретена деления (Рис. 8).
Рис. 8. Строение жгутика и деление клетки
Само веретено деления образуется из микротрубочек, при сборке которых центриоли играют роль центров организации. Центриоли встречаются практически во всех животных клетках и в клетках низших растений, в клетках высших растений клеточный центр устроен по-другому и центриолей не содержит.
Рибосомы
Рибосомы – это очень мелкие органеллы, диаметром около 20 нм, необходимые клетке для синтеза белка (Рис. 9).
Рис. 9. Рибосомы
Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой. В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом – это синтез белка. Синтез белка – сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.
Если рибосомы находятся в свободном состоянии, то, как правило, они синтезируют белок, необходимый для данной клетки (Рис. 10).
Рис. 10. Свободные рибосомы
Если рибосомы прикреплены к эндоплазматической сети, то считается, что такой белок идет на экспорт – секретируется во внеклеточное пространство или используется другими клетками данного организма (Рис. 11).
Рис. 11. Эндоплазматическая сеть