Вес тела. Невесомость
Вес тела
Весом тела называется сила, с которой данное тело давит на опору или растягивает подвес вследствие притяжения данного тела к Земле.
Установим основные характеристики этой силы – причину ее возникновения, модуль и направление. Рассмотрим тело, подвешенное на пружине (Рис. 1.). Под действием силы тяжести тело стремится двигаться вниз, увлекая за собой нижний конец пружины. В свою очередь, пружина деформируется, что вызывает появление в ней силы упругости.
Рис. 1. Тело, подвешенное на пружине
Под действием силы упругости, которая приложена к верхнему краю тела, это тело, в свою очередь, также деформируется, возникает другая сила упругости, обусловленная деформацией тела. Эта сила приложена к нижнему краю пружины. Кроме того, она равна по модулю силе упругости пружины и направлена вниз. Именно эту силу упругости тела мы и будем называть его весом, то есть вес тела приложен к пружине и направлен вниз.
После того как колебания тела на пружине затухнут, система придет в состояние равновесия, в котором сумма сил, действующих на тело, будет равна нулю. Это значит, что сила тяжести рана по модулю и противоположна по направлению силе упругости пружины (Рис. 2). Последняя равна по модулю и противоположна по направлению весу тела, как мы уже выяснили. Значит, сила тяжести по модулю равна весу тела. Данное соотношение не универсально, но в нашем примере – справедливо.
Рис. 2. Вес и сила тяжести
Приведенная формула не означает, что сила тяжести и вес – одно и то же. Эти две силы разные по своей природе. Вес – это сила упругости, приложенная к подвесу со стороны тела, а сила тяжести – это сила, приложенная к телу со стороны Земли.
Рис. 3. Вес и сила тяжести тела на подвесе и на опоре
Невесомость
Выясним некоторые особенности веса. Вес – это сила, с которой тело давит на опору или растягивает подвес, из этого следует, что если тело не подвешено или не закреплено на опоре, то его вес равен нулю. Данный вывод кажется противоречивым нашему повседневному опыту. Однако он имеет вполне справедливые физические примеры.
Если пружину с подвешенным к ней телом отпустить и позволить ей свободно падать, то указатель динамометра будет показывать нулевое значение (Рис. 4). Причина этого проста: груз и динамометр движутся с одинаковым ускорением (g) и одинаковой нулевой начальной скоростью (V0). Нижний конец пружины движется синхронно с грузом, при этом пружина не деформируется и силы упругости в пружине не возникает. Следовательно, не возникает и встречной силы упругости, которая является весом тела, то есть тело не обладает весом, или является невесомым.
Рис. 4. Свободное падение пружины с подвешенным к ней телом
Состояние невесомости возникает благодаря тому, что в земных условиях сила тяжести сообщает всем телам одинаковое ускорение, так называемое ускорение свободного падения. Для нашего примера мы можем сказать, что груз и динамометр движутся с одинаковым ускорением. Если на тело действует только сила тяжести или только сила всемирного тяготения, то это тело находится в состоянии невесомости. Важно понимать, что в этом случае исчезает только вес тела, но не сила тяжести, действующая на это тело.
Состояние невесомости – не экзотика, довольно часто многие из вас его испытывали – любой человек, подпрыгивающий или спрыгивающий с какой либо высоты, до момента приземления находится в состоянии невесомости.
Рассмотрим случай, когда динамометр и прикрепленное к его пружине тело движутся вниз с некоторым ускорением, но не совершают при этом свободного падения. Показания динамометра уменьшатся по сравнению с показаниями при неподвижном грузе и пружине, значит, вес тела стал меньше, чем он был в состоянии покоя. В чем причина такого уменьшения? Дадим математическое объяснение, опираясь на второй закон Ньютона.
Рис. 5. Математическое объяснение веса тела
На тело действуют две силы: сила тяжести, направленная вниз, и сила упругости пружины, направленная вверх. Эти две силы сообщают телу ускорение. и уравнение движения будет иметь вид:
m = + m
Выберем ось y (Рис. 5), поскольку все силы направлены вертикально, нам достаточно одной оси. В результате проецирования и переноса слагаемых получим – модуль силы упругости будет равен:
ma = mg - Fупр
Fупр = mg - ma,
где в левой и правой части уравнения стоят проекции сил, указанных во втором законе Ньютона, на ось y. Согласно определению, вес тела по модулю равен силе упругости пружины, и, подставив ее значение, получим :
P = Fупр = mg - ma = m( g - а)
Вес тела равен произведению массы тела на разность ускорений. Из полученной формулы видно, что если модуль ускорения тела меньше модуля ускорения свободного падения, то вес тела меньше силы тяжести, то есть вес тела, движущегося ускоренно, меньше веса покоящегося тела.
Рассмотрим случай, когда тело с грузиком движется ускоренно вверх (Рис. 6).
Стрелка динамометра покажет значение веса тела большее, чем покоящегося груза.
Рис. 6. Тело с грузиком движется ускоренно вверх
Тело движется вверх, и его ускорение направлено туда же, следовательно, нам необходимо поменять знак проекции ускорения на ось у.
Из формулы видно, что теперь вес тела больше силы тяжести, то есть больше веса покоящегося тела.
Увеличение веса тела, вызванное его ускоренным движением, называется перегрузкой.
Это справедливо не только для тела, подвешенного на пружине, но и для тела, укрепленного на опоре.
Рассмотрим пример, в котором проявляется изменение тела при его ускоренном движении (Рис. 7).
Автомобиль движется по мосту выпуклой траектории, то есть по криволинейной траектории. Будем считать форму моста дугой окружности. Из кинематики мы знаем, что автомобиль движется с центростремительным ускорением, величина которого равна квадрату скорости, деленной на радиус кривизны моста. В момент нахождения его в наивысшей точке, это ускорение будет направлено вертикально вниз. Согласно второму закону Ньютона это ускорение сообщается автомобилю равнодействующей силой тяжести и силой реакции опоры.
m = + m
Выберем координатную ось у, направленную вертикально вверх, и запишем это уравнение в проекции на выбранную ось, подставим значения и проведем преобразования:
Рис. 7. Наивысшая точка нахождения автомобиля
Вес автомобиля, по третьему закону Ньютона, равен по модулю силе реакции опоры (), при этом мы видим, что вес автомобиля по модулю меньше силы тяжести, то есть меньше веса неподвижного автомобиля.
Пример задачи
Ракета при старте с Земли движется вертикально вверх с ускорением а=20 м/с2. Каков вес летчика-космонавта, находящегося в кабине ракеты, если его масса m=80 кг?
Совершенно очевидно, что ускорение ракеты направлено вверх и для решения мы должны использовать формулу веса тела для случая с перегрузом (Рис. 8).
Рис. 8. Иллюстрация к задаче
Необходимо отметить, что если неподвижное относительно Земли тело имеет вес 2400 Н, то его масса составляет 240 кг, то есть космонавт ощущает себя в три раза массивнее, чем есть на самом деле.
Заключение
Мы разобрали понятие веса тела, выяснили основные свойства этой величины и получили формулы, которые позволяют нам рассчитать вес тела, движущегося с ускорением.
Если тело движется вертикально вниз, при этом модуль его ускорения меньше ускорения свободного падения, то вес тела уменьшается по сравнению со значением веса неподвижного тела.
Если тело движется ускоренно вертикально вверх, то его вес возрастает и при этом тело испытывает перегруз