Неравенства с двумя переменными. Системы нелинейных неравенств с двумя переменными

Решение неравенства с двумя переменными, а тем более системы неравенств с двумя переменными, представляется достаточно сложной задачей. Однако есть простой алгоритм, который помогает легко и без особых усилий решать на первый взгляд очень сложные задачи такого рода. Попробуем в нем разобраться.

Пусть мы имеем неравенство с двумя переменными одного из следующих видов:

y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).

Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:

  1. Строим график функции y = f(x), который разбивает плоскость на две области.
  2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.
  3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией. А теперь рассмотрим несколько задач на эту тему.

Задача 1.

Какое множество точек задается неравенством x · y ≤ 4?

Решение.

1) Строим график уравнения x · y = 4. Для этого сначала преобразуем его. Очевидно, что x в данном случае не обращается в 0, так как иначе мы бы имели 0 · y = 4, что неверно. Значит, можем разделить наше уравнение на x. Получим: y = 4/x. Графиком данной функции является гипербола. Она разбивает всю плоскость на две области: ту, что между двумя ветвями гиперболы и ту, что снаружи их.

2) Выберем из первой области произвольную точку, пусть это будет точка (4; 2). Проверяем неравенство: 4 · 2 ≤ 4 – неверно.

Значит, точки данной области не удовлетворяют исходному неравенству. Тогда можем сделать вывод о том, что множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.

3) Так как неравенство нестрогое, то граничные точки, то есть точки графика функции y=4/x, рисуем сплошной линией. 

Решение неравенства с двумя переменными

Закрасим множество точек, которое задает исходное неравенство, желтым цветом (рис. 1).

Задача 2.

Изобразить область, заданную на координатной плоскости системой

begin mathsize 12px style open curly brackets table attributes columnalign left end attributes row cell table row cell y greater than x squared plus 2 semicolon end cell row cell y plus x greater than 1 semicolon end cell end table end cell row cell table row cell x squared plus y squared less or equal than 9. end cell end table end cell end table close end style

Решение.

Строим для начала графики следующих функций (рис. 2):

y = x2 + 2 – парабола,

y + x = 1 – прямая

x2 + y2 = 9 – окружность.

Решение неравенства с двумя переменными

Теперь разбираемся с каждым неравенством в отдельности.

1) y > x2 + 2.

Берем точку (0; 5), которая лежит выше графика функции.  Проверяем неравенство: 5 > 02 + 2 – верно.

Следовательно, все точки, лежащие выше данной параболы y = x2 + 2, удовлетворяют первому неравенству системы. Закрасим их желтым цветом.

2) y + x > 1.

Берем точку (0; 3), которая лежит выше графика функции. Проверяем неравенство: 3 + 0 > 1 – верно.

Следовательно, все точки, лежащие выше прямой y + x = 1, удовлетворяют  второму неравенству системы. Закрасим их зеленой штриховкой.

3) x2 + y2 ≤ 9.

Берем точку (0; -4), которая лежит вне окружности x2 + y2 = 9.  Проверяем неравенство: 02 + (-4)2 ≤ 9 – неверно.

Следовательно, все точки, лежащие вне окружности x2 + y2 = 9, не удовлетворяют  третьему неравенству системы. Тогда можем сделать вывод о том, что все точки, лежащие внутри окружности x2 + y2 = 9, удовлетворяют  третьему неравенству системы. Закрасим их фиолетовой штриховкой.

Решение неравенства с двумя переменными

Не забываем о том, что если неравенство строгое, то соответствующую граничную линию следует рисовать пунктиром. Получаем следующую картинку (рис. 3).

Решение неравенства с двумя переменными

Искомая область – это область, где все три раскрашенных области пересекаются друг с другом (рис. 4).

Вопросы к конспектам

Напишите неравенство, решением которого является окружность и точки внутри окружности: Напишите неравенство, решением которого является окружность
Напишите неравенство, решением которого является окружность и точки внутри окружности: Напишите неравенство, решением которого является окружность
Найдите точки, являющиеся решением неравенства begin mathsize 12px style x squared plus y squared less or equal than 144 end style:
1) (6;10)  
2) (-12;0)  
3) (8;9)  
4) (9;7)  
5) (-12;12)
Найдите точки, являющиеся решением неравенства begin mathsize 12px style x squared plus y squared greater or equal than 100 end style
1) (6;10)  
2) (-10;0) 
3) (8;5)  
4) (9;7)  
5) (-10;10)
Последнее изменение: Пятница, 17 Февраль 2017, 23:55