Первообразная функции. Основное свойство первообразной
Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.
Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.
Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.
Пример №1.
Пусть (f(х))’ = 3х2. Найдем f(х).
Решение:
Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х3, ибо
(х3)’ = 3х2 Однако, легко можно заметить, что f(х) находится неоднозначно. В качестве f(х) можно взять f(х)= х3+1 f(х)= х3+2 f(х)= х3-3 и др.
Т.к. производная каждой из них равно 3х2. (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х3+С, где С - любое постоянное действительное число.
Любую из найденных функций f(х) называют первообразной для функции F`(х)= 3х2
Определение.
Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х3 первообразная для f(х)=3х2 на (- ∞ ; ∞ ). Так как, для всех х ~R справедливо равенство: F`(х)=(х3)`=3х2
Как мы уже заметили, данная функция имеет бесконечное множество первообразных .
Пример №2.
Функция есть первообразная для всех на промежутке (0; +∞), т.к. для всех ч из этого промежутка, выполняется равенство.
Задача интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные. При решении этой задачи важную роль играет следующее утверждение:
Признак постоянства функции. Если F'(х) = 0 на некотором промежутке I, то функция F — постоянная на этом промежутке.
Доказательство.
Зафиксируем некоторое x0 из промежутка I. Тогда для любого числа х из такого промежутка в силу формулы Лагранжа можно указать такое число c, заключенное между х и x0, что
F(x) - F(x0) = F'(c)(x-x0).
По условию F’ (с) = 0, так как с ∈1, следовательно,
F(x) - F(x0) = 0.
Итак, для всех х из промежутка I
F(x) = F(x0),
т е. функция F сохраняет постоянное значение.
Все первообразные функции f можно записать с помощью одной формулы, которую называютобщим видом первообразных для функции f. Справедлива следующая теорема (основное свойство первообразных):
Теорема. Любая первообразная для функции f на промежутке I может быть записана в виде
F(x) + C, (1) где F (х) — одна из первообразных для функции f (x) на промежутке I, а С — произвольная постоянная.
Поясним это утверждение, в котором кратко сформулированы два свойства первообразной:
- какое бы число ни поставить в выражение (1) вместо С, получим первообразную для f на промежутке I;
- какую бы первообразную Ф для f на промежутке I ни взять, можно подобрать такое число С, что для всех х из промежутка I будет выполнено равенство
Ф(x)= F(x)+C.
Доказательство.
- По условию функция F — первообразная для f на промежутке I. Следовательно, F'(х)= f (х) для любого х∈1, поэтому (F(x) + C)' = F'(x) + C'=f(x)+0=f(x), т. е. F(x) + C — первообразная для функции f.
- Пусть Ф (х) — одна из первообразных для функции f на том же промежутке I, т. е. Ф'(x) = f (х) для всех x∈I.
Тогда (Ф(x) - F (x))' = Ф'(х)-F’ (х) = f(x)-f(x)=0.
Отсюда следует в. силу признака постоянства функции, что разность Ф(х) — F(х) есть функция, принимающая некоторое постоянное значение С на промежутке I.
Таким образом, для всех х из промежутка I справедливо равенство Ф(х) — F(x)=С, что и требовалось доказать. Основному свойству первообразной можно придать геометрический смысл: графики любых двух первообразных для функции f получаются друг из друга параллельным переносом вдоль оси Оу
Свойства первообразной
- Первообразная суммы равна сумме первообразных
- Первообразная произведения константы и функции равна произведению константы и первообразной функции
- Достаточным условием существования первообразной у заданной на отрезке функции является непрерывность на этом отрезке
- Необходимыми условиями существования являются принадлежность функции первому классу Бэра и выполнение для неё свойства Дарбу
- У заданной на отрезке функции любые две первообразные отличаются на постоянную.
Вопросы к конспектам