Отношение. Процентное отношение двух чисел
Частное двух чисел называют отношением этих чисел.
Так с помощью букв записывают отношение чисел a и b, причем, а – предыдущий член, b – последующий член. (Напоминание: дробная черта означает знак деления).
Процентное отношение.
Правило. Чтобы найти процентное отношение двух чисел, нужно одно число разделить на другое, а результат умножить на 100.
Например, вычислить, сколько процентов составляет число 52 от числа 400.
По правилу: 52 : 400 × 100 — 13 (%).
Обычно такие отношения встречаются в задачах, когда величины заданы, а нужно определить, на сколько процентов вторая величина больше или меньше первой (в вопросе задачи: на сколько процентов перевыполнили задание; на сколько процентов выполнили работу; на сколько процентов снизилась или повысилась цена и т. д.).
Решения задач на процентное отношение двух чисел редко предполагают только одно действие. Чаше решение таких задач состоит из 2-3 действий.
Примеры
Задача 1.
Завод должен был за месяц изготовить 1 200 изделий, а изготовил 2 300 изделий. На сколько процентов завод перевыполнил план?
1-й вариант
Решение:
1 200 изделий — это план завода, или 100% плана.
1) Сколько изделий изготовил завод сверх плана?
2 300 — 1 200 = 1 100 (изд.)
2) Сколько процентов от плана составят сверхплановые изделия?
1 100 от 1 200 => 1 100 : 1 200 × 100 = 91,7 (%).
2-й вариант
Решение:
1) Сколько процентов составляет фактический выпуск изделий по сравнению с плановым?
2 300 от 1 200 => 2 300 : 1 200 ×100 = 191,7 (%).
2) На сколько процентов перевыполнен план?
191,7 — 100 = 91,7 (%)
Ответ: на 91,7%.
Задача 2.
Надо вспахать участок поля в 500 га. В первый день вспахали 150 га. Сколько процентов составляет вспаханный участок от всего участка?
Решение
Чтобы ответить на вопрос задачи, надо найти отношение (частное) вспаханной части участка ко всей площади участка и выразить его отношение в процентах:
150/500 = 3/10 = 0,3 = 30 %
Таким образом, мы нашли процентное отношение, то есть сколько процентов одно число (150) составляет от другого числа (500).
Задача 3.
Рабочий изготовил за смену 45 деталей вместо 36 по плану. Сколько процентов фактическая выработка составляет от плановой?
Решение
Для ответа на вопрос задачи надо найти отношение (частное) числа 45 к 36 и выразить его в процентах:
45 : 36 = 1,25 = 125 %.
Задача 4.
В семенах сои содержится 20 % масла. Сколько масла содержится в 700 кг сои?
Решение.
В задаче требуется найти указанную часть (20 %) от известной величины (700 кг). Такие задачи можно решать способом приведения к единице. Основное значение величины – 700 кг. Её мы можем принять за условную единицу. А условная единица и есть 100 %. Так как пропорциональная зависимость прямая Кратко условия задачи можно записать так:
Составим пропорцию и найдем неизвестный член пропорции:
Ответ: 140кг.
Нахождение числа по его процентам.
Задача 1.
Из хлопка-сырца получается 24 % волокна. Сколько надо взять хлопка-сырца, чтобы получить 480 кг волокна?
Решение
480 кг волокна составляют 24 % от некоторой массы хлопка-сырца, которую примем за Х кг. Будем считать, что Х кг составляют 100 %. Теперь кратко условие задачи можно записать так:
Ответ: 2000кг = 2т.
Эту задачу можно решить и иначе.
Если в условии этой задачи вместо 24 % написать равное ему число 0,24, то получим задачу на нахождение числа по известной его части (дроби). А такие задачи решают делением. Отсюда вытекает ещё один способ решения:
1) 24 % = 0,24; 2) 480 : 0,24 = 2000 (кг) = 2 (т).
Чтобы найти число по данным его процентам, надо выразить проценты в виде дроби и решить задачу на нахождение числа по данной его дроби.
Вопросы к конспектам